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Abstract. For nematic liquid crystals, we study the local stability of a radial hedgehog against
biaxial perturbations. Our analysis employs the Landau–de Gennes functional to describe the
free energy stored in a ball, whose radius is a parameter of the model. We find that a radial
hedgehog may be either unstable or metastable, depending on the values of the elastic constants.
For unstable hedgehogs, we give an explicit expression for the radius of the ball within which the
instability manifests itself: it can be interpreted as the size of the biaxial core of the defect; it is
of the same order of magnitude as the radius of the disclination ring predicted by Penzenstadler
and Trebin’s model. The metastable hedgehogs predicted by our model are the major novelty of
the paper. They tell us that we may also expect truly uniaxial point defects, whose core contains
no biaxial structure.

1. Introduction

Hedgehogis the figurative name often given to a special defect exhibited by several ordered
media; it is a point defect surrounded by a radially symmetric structure. For uniaxial nematic
liquid crystals, the structure around a hedgehog is the unit fieldn representing the orientation
of the optic axis; it is radial relative to the defect, as in polar spherical coordinates the field
er is relative to the origin. Figure 1 makes this idea clearer.

Strictly speaking, this is aradial hedgehog. In studying orientational transitions in
nematic droplets, Lavrentovich and Terent’ev [1] observed a different structure around a
point defect, with a lower degree of symmetry, being axisymmetric instead of radially
symmetric. They called this type of hedgehoghyperbolicand compared its stability to that
of the radial one. Here we content ourselves with studying only the local stability of radial
hedgehogs.

The classical Frank’s theory for uniaxial nematics posits the following free-energy
density per unit volume

σF = k1(div n)2 + k2(n · curln)2 + k3|n ∧ curln|2 + (k2 + k4)(tr(∇n)2 − (div n)2)

(1.1)

wherek1 to k4 are material constants subject to the inequalities

2k1 > k2 + k4 k3 > 0 |k4| < k2 (1.2)

put forward by Ericksen in [2] to ensure thatσF is positive definite.
Within Frank’s theory the stability of a hedgehog has been extensively studied, especially

in the mathematical literature of the last few years. Breziset al [3] first proved that when
k1 = k2 = k3 = k andk4 = 0, that is, when (1.1) reduces to

σF = k|∇n|2 (1.3)
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Figure 1. Radial hedgehog.

the free energy stored in a ball subject to the radial boundary condition forn attains its
minimum on the radial hedgehog placed at the centre, whatever the radius of the ball.
Surprisingly enough, when Frank’s constantsk1, k2 andk3 are not all equal to one another,
the radial hedgehog need not be the energy minimizer in a ball as above. This conclusion,
which is due to the work of H́elein [4], Cohen and Taylor [5] and Kinderlehrer and Ou
[6], is briefly recalled in section 4 below; it warns us, who will employ Landau–de Gennes
theory, to consider properly the role played byall elastic constants in determining both
stable and unstable hedgehogs.

Our analysis will have a local nature. We allow for moderate biaxial alterations of the
order parameter tensorQ about the uniaxial radial hedgehog placed at the centre of a ball
BR, whose radiusR is treated as a parameter. We regardBR as the core of the hedgehog,
inside which a biaxial structure may or may not be present: it will be thought of as if it
were removable by local surgery from the surrounding, mostly uniaxial, environment. Such
an interpretation ofBR will become evident in section 5, where we describe the class of
admissible biaxial variations of the radial hedgehog; there we prescribe the principal axis of
Q to be the triad of unit vectors in the frame of spherical coordinates, while the eigenvalues
of Q are left free to vary in the interior ofBR, as well as on its boundary. Thus, the
eigenvectors ofQ preserve the radial symmetry of the uniaxial configuration, whereas its
eigenvalues may break it.

The variational analysis is presented in sections 6 and 7, and summarized in the phase
diagram illustrated in section 8 for all admissible values of the elastic constants in the
Landau–de Gennes free-energy functional. The main outcome of this study is that a uniaxial
hedgehog, already stable against uniaxial variations, can be either stable or unstable against
biaxial variations inBR, depending onR and on the value of the elastic constants. When
unstable, it is so only forR less than a critical valueRc, which we determine explicitly.
When stable, it is so irrespective of the value ofR. We interpretRc as the size of the
core within which a stable biaxial structure may develop, whose details elude our local
analysis. When the hedgehog is stable, we cannot appreciate even a faint trace of such a
biaxial structure, as there is no eigenmode that makes the second variation of the energy
vanish. We move one step further, asserting that in the case of stable hedgehogs such a
core structure fails to exist. It is as if there were two types of hedgehog, one with a core
structure and the other without.

Here stability is to be properly meant aslocal stability. Furthermore, locally stable
hedgehogs should indeed be calledmetastable, as proven by the various studies on the
formation of a ring disclination from a hedgehog. They have been neatly summarized
in a recent paper [7], where an attempt is also made to resolve the differences in the
various theoretical models, by resorting to a Monte Carlo simulation. The outcomes of
this simulation, however, are not conclusive, as they do predict the formation of a ring
disclination, but with a radius of the order of the nematic coherence length, in contrast to
the prediction of Penzenstadler and Trebin’s model [8], which estimates a radius larger than
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Figure 2. Ring disclination. Both the ring and
the polar axis consist of uniaxial states, with
scalar order parameters opposite in sign.

this by at least one order of magnitude.
On the other hand, Penzenstadler and Trebin’s model appears to be the best theoretical

model available, being based on a fine estimate of the free energy in a class of biaxial
orientations that mimic the structure surrounding a ring disclination, which indeed is no
longer viewed as a singularity for the optic axis, as was the case in Mori and Nakanishi’s
model [9]. Following Lyuksyutov [10], Penzenstadler and Trebin regard the ring as being
composed of uniaxial states with optic axis tangent to it and negative scalar order parameter.
The liquid crystal is again uniaxial along the axis orthogonal to the plane of the ring, where
the orientation is parallel to the same axis and the scalar order parameter is positive; all
around the ring there are biaxial states. Figure 2 illustrates schematically a ring disclination.

In the class of fields employed in [8] the radially uniaxial orientation is recovered at
infinity as an asymptotic boundary condition; thus, the eigenvectors of the order parameter
tensorQ vary in space together with its eigenvalues. In this class the radial hedgehog is
obtained from the scaling that shrinks the uniaxial ring to its centre; as this limiting case is
approached, the energy stored within the ring increases, and so it is little surprise that the
total energy achieves its minimum away from it. The energy is minimized for a specific
value of the scaling parameter, which then determines the equilibrium radius of the ring.

From a variational perspective, such a result amounts to saying that there is a path
emanating from the radial hedgehog in the chosen admissible class of fields, along which
the energy first decreases: this is enough to conclude that the radial hedgehog isunstable,
though a deeper analysis would be required to make sure that the ring determined from
this argument is indeed the absolute minimizer. More importantly, in approaching the
hedgehog, the fields of [8] fail to be close to it in any classical norm, as we show in some
detail in section 9. Thus, this peculiar instability of the radial hedgehog might indeed mask
a metastability, which can be revealed by a local stability analysis.

Here our study focuses, as it were, on the reverse side of Penzenstadler and Trebin’s
model. We restrict our attention tosmall biaxial perturbations of the radial uniaxial
hedgehog, exploring itsincipient instability. We find it to be metastable for certain values
of the elastic constants in the Landau–de Gennes free-energy functional. We think of
metastable hedgehogs as having no biaxial core. This brings to mind the picture proposed
by Schopohl and Sluckin in [11], which, apart from an isotropic point at the centre of the
hedgehog, exhibits a truly uniaxial core.

In sections 2 and 3 below we prepare the way to the linearized analysis outlined in the
subsequent sections. Finally, in section 9 we compare our study to the former ones, and in
section 10 we present our main conclusions.
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2. Landau–de Gennes free energy

We will describe a liquid crystal by means of a second-order tensorQ proportional to the
alignment tensoremployed in [16]; more details about the definition ofQ can be found, for
example, in section 1.3 of [12].Q is a traceless and symmetric tensor whose eigenvalues
qi satisfy the condition

− 1
3 6 qi 6 2

3 . (2.1)

This tensor, usually referred to as theorder tensor, represents biaxial configurations when
its eigenvalues are all distinct, while it represents uniaxial states when two eigenvalues
coincide. In the latter caseQ is usually cast thus:

Q = s0(n ⊗ n − 1
3I) (2.2)

where the unit vectorn stands for the optic axis and the scalars0 ∈ [− 1
2, 1] is known as

the scalar order parameter, or degree of orientation. Isotropy occurs whenQ = 0.
Our aim is to study the following free-energy functional

F :=
∫

B
(fel + σ) dV

wherefel is the elastic free-energy density andσ is an internal potential. The integration
domainB represents the region occupied by the liquid crystal and, at this stage, its boundary
∂B may be taken to be of classC2. We devote this section to the description offel deferring
a full treatment of the internal potential to the next section. We express the elastic term
following Landau–de Gennes theory which yields

fel := L1|∇Q|2 + L2(div Q)2 + L3I3 . (2.3)

In Cartesian componentsI3 has the following expression:

I3 := Qij,kQik,j

where the sum over repeated indices is understood andQij,k := ∂Qij /∂xk. This term
contributes a surface energy depending only on the trace ofQ on ∂B since the following
formula holds:∫

B
I3 dV =

∫
B
(div Q)2 dV +

∫
∂B

Q · {∇s(Qν)− Q∇sν − divs Q ⊗ ν} dA . (2.4)

Hereν is the outer normal to∂B and the subscript ‘s’ refers to the surface version of both
operators∇ and div, according to the definition:

∇sf(p) := ∇f(p)Es(p)

(divs f)(p) := tr(∇sf(p))

wherep is a point on∂B, Es := I − ν ⊗ ν is the projector on the tangent plane inp to
∂B andf is a vector field of classC1 on ∂B.

WhenQ is uniaxial as in (2.2),L1, L2 andL3 reduce to Frank’s constants through the
following relations:

k1 = k3 = (2L1 + L2 + L3)s
2
0 (2.5a)

k2 = 2L1s
2
0 (2.5b)

k4 = L3s
2
0 . (2.5c)

It is to be noted that Landau–de Gennes theory leads to the equalityk1 = k3 which would
fail to apply to many real substances. There have been several attempts to overcome this
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difficulty with Landau–de Gennes theory; they all rely on adding new terms to the energy
density in (2.3) that depend on higher powers ofQ. The most systematic study of the
consequences resulting from these higher terms is [13]. Following this line of thought,
however, leads to a considerable increase in the number of elastic constants. Here, to keep
things simple, we will adopt the original Landau–de Gennes theory, and so equality (2.5a)
will hereafter be held true. As shown by (2.5c), the constantL3 is directly related tok4,
which introduces a surface term in Frank’s energy, whose integral overB can be made
into an integral on∂B, precisely as in (2.4). Another surface term, originally introduced
in Frank’s energy by Nehring and Saupe [18], has recently received much attention in a
still open debate (cf e.g. [19, 20]). Also this term, universally called thek13-term, has its
analogue in the theory we employ here, but we omit it because it would bring infel the
second gradient ofQ, and so disregarding the higher-order terms listed in [13] would be
no longer justified.

We end this section by recasting Ericksen’s inequalities for Frank’s constants (1.2) in
terms ofL1, L2 andL3:

2L1 + 2L2 + L3 > 0 (2.6a)

2L1 + L2 + L3 > 0 (2.6b)

−2L1 < L3 < 2L1 (2.6c)

L1 > 0 . (2.6d)

Inequalities (2.6), which are assumed to hold throughout this paper, are less restrictive than
those expressing the requirement that the free-energy density in (2.3) be positive definite.
Moreover, it is easily shown that they are not all independent, as (2.6b) follows from (2.6a)
and (2.6c).

3. Lyuksyutov’s constraint

In this section we focus attention on the internal potentialσ , which in Landau–de Gennes
theory is given the form

σ(Q) := a tr Q2 − b tr Q3 + c(tr Q2)2 b > 0 (3.1)

where tr denotes the trace. The function expressingσ(Q) is often a severe obstacle in finding
an explicit solution to variational problems forF : we present an argument, originally due to
Lyuksyutov [10] and recovered in this form by Penzenstadler and Trebin [8], which reduces
to a single term the formula forσ .

This method rests upon the observation that constantsa andc in (3.1) are much greater
thanb, so that the term trQ3 can be viewed as a perturbation. As a first step, a minimization
of a tr Q2 + c(tr Q2)2 is performed, yielding

Q2
0 := (tr Q2) = − a

2c
> 0

for the minimizer. Then,σ = −b tr Q3 is inserted in the free-energy functional and attention
is confined to the order tensorsQ satisfying the condition

tr Q2 = Q2
0 . (3.2)

We will conform to this formulation writing (3.2) as

tr Q2 = 2
3s

2
0 (3.3)
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since a uniaxial configuration like (2.2) has trQ2 = 2
3s

2
0. Thus, we can writeF in the form

F [Q] =
∫

B

{L1|∇Q|2 + L2(div Q)2 + L3I3 − b tr Q3} dV (3.4)

subject to (2.1), (3.3) and

Q = QT (3.5a)

tr Q = 0 . (3.5b)

Hereafter, having in mind a hedgehog, the regionB will be the ballBR with its centre at
the singular point, whose radiusR is to be treated as a parameter, since we seek the critical
valueRc within which the biaxial structure would be preferred energetically.

4. Local uniaxial stability

Before turning to the study ofF in BR, it seems appropriate to give an account of a theorem
first proved by Cohen and Taylor [5], which establishes a relation among Frank’s constants
ensuring that a hedgehog is locally stable in a class of uniaxial perturbations altering the
optic axis only in a spherical region surrounding the defect. It states that the radial hedgehog
is locally stable against these variations if and only if Frank’s constants satisfy the inequality

8(k2 − k1)+ k3 > 0 (4.1)

which, translated into the language of Landau–de Gennes theory, reads as

2L1 − 7(L2 + L3) > 0 . (4.2)

From now on, we take it as satisfied.
Inequality (4.1) has an interesting story. That its reverse causes a radial hedgehog to

become unstable against uniaxial perturbations had already been proved by Hélein [4]; his
proof was constructive, based on an explicit example. Conversely, Cohen and Taylor’s
proof that (4.1) suffices to ensure stability is quite involved; a simpler proof has recently
been given by Kinderlehrer and Ou [6].

5. Admissible class

So far, we have imposed onQ some restrictions arising both from the general theory and
from the particular problem under study, but to obtain an explicit expression forF we also
need a representation formula for the order tensor. Hence, we consider only tensors that
can be cast in the following form:

Q = sr (r, ϑ)er ⊗ er + sϑ(r, ϑ)eϑ + sϕ(r, ϑ)eϕ ⊗ eϕ (5.1)

where(er , eϑ , eϕ) is the local frame associated with polar spherical coordinates(r, ϑ, ϕ).
This class includes both uniaxial and biaxial configurations; besides, it has two important
features that are worth noting: the eigenvalues ofQ are independent of the longitudeϕ,
while at each point the eigenvectors are members of the orthonormal triad(er , eϑ , eϕ). The
former property amounts to requiring that the admissible configurations be symmetric about
the polar axis. The latter property provides a more drastic restriction, as it requires the
eigenvectors ofQ to preserve the radial symmetry of the hedgehogs. Both requirements
help in keeping calculations simple (though not too simple) and allow us to capture many
details of the phenomenon we aim to describe. They seem even more justified in the light
of the attitude taken here of looking just for the incipient instability of a radial hedgehog,
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Figure 3. A pictorial description of the order tensorQ belonging to the
admissible class. The ellipsoids represent the eigenvectors ofQ through
their principal axes while their semi-axes are proportional to the eigenvalues
of M .

which we expect to break its symmetry as little as possible. Figure 3 shows a schematic of
the configurations described by (5.1).Q is represented through ellipsoids: their principal
axes are along its eigenvectors, while their semi-axes are proportional to the eigenvalues of
M := Q + 1

3I.
We are now in a position to express conditions (2.1), (3.3) and (3.5) in terms of the

eigenvalues ofQ; while (3.5a) is obviously verified, (3.5b) and (3.3) lead, respectively, to
the following relations:

sr + sϑ + sϕ = 0 s2
r + s2

ϑ + s2
ϕ = 2

3s
2
0 (5.2)

which represent a circumference in the eigenvalues space. If we transform the triple
(sr , sϑ , sϕ) into (s ′r , s

′
ϑ , s

′
ϕ) according to the formulae

sr = 1√
3
s ′r − 2√

6
s ′ϑ

sϑ = 1√
3
s ′r + 1√

6
s ′ϑ − 1√

2
s ′ϕ

sϕ = 1√
3
s ′r + 1√

6
s ′ϑ + 1√

2
s ′ϕ

(5.3)

then the circumference is represented in a simpler way as

s ′r = 0 (s ′ϑ)
2 + (s ′ϕ)

2 = 2
3s

2
0

or, by introducing the angleψ in ]−π, π ] as

s ′r = 0 s ′ϑ = −
√

2
3s0 cosψ s ′ϕ =

√
2
3s0 sinψ (5.4)

so that the eigenvalues ofQ can be given as functions ofψ only:

sr = 2

3
s0 cosψ sϑ = −2

3
s0 cos

(
ψ − π

3

)
sϕ = −2

3
s0 cos

(
ψ + π

3

)
(5.5)

wheres0 is taken aspositive.
Equations (5.5) show thatψ = 0, π , ψ = π

3 , − 2π
3 , and ψ = 2π

3 , −π
3 describe,

respectively, uniaxial configurations alonger , eϑ , andeϕ ; they differ, though, by the sign
of the scalar order parameter: it is positive forψ = 0, 2π

3 , and− 2π
3 , whereas it is negative

for ψ = π
3 , π , and−π

3 . Finally, on considering condition (2.1), it can be shown that the
set of admissible states in the(s ′ϑ , s

′
ϕ)-plane should be confined to the region within the

equilateral triangle drawn in figure 4.
The origin coincides with the centre of the triangle and represents the isotropic state

since Q there vanishes. The medians describe uniaxial configurations; in particular, the
radial hedgehogs lie on thes ′ϑ -axis (ψ = 0). The circumference expressing Lyuksyutov’s
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Figure 4. Admissible states. The region
inside the equilateral triangle represents
configurations compatible with the properties
of Q. Lyuksyutov’s constraint corresponds
to the circumference drawn in the picture.

constraint is contained in the interior of the triangle untils0 is less than1
2; when s0 = 1

2,
it becomes tangent to it with all contact points lying on the uniaxial lines, while, when
s0 = 1, it circumscribes the triangle. The fact that the circumference could partially escape
the admissible triangle will not invalidate our analysis, since this employs only a small
arc on the constraint, about the pointψ = 0, which corresponds to a radially uniaxial
configuration with positive scalar order parameter. There always is such an arc falling
within the admissible triangle, provideds0 < 1. Sinces0 = 1 would makeQ in (2.2) the
order tensor of a perfectly aligned uniaxial nematic, excluding this case, has no physical
relevance.

6. Azimuthal variation

Hereafter the centre ofBR will be the origin of the polar spherical coordinates introduced
above. With the aid of the representation formula (5.1), after some calculations mainly
based on the formulae in subsection 2.3.3 of [12], we obtain

|∇Q|2 = 4s2
0

9

{
3

2
|∇ψ |2 + 6

r2

(
1

2
+ cos2ψ + cot2 ϑ sin2ψ

)}
(div Q)2= 4s2

0

9

{(
3

r
cosψ−sinψ∇ψ · er

)2

+
(

sin
(π

3
−ψ

)
∇ψ · eϑ+ 1

r

√
3 cotϑ sinψ

)2

+ sin2
(π

3
+ ψ

)
(∇ψ · eϕ)

2

}
tr Q3 = 4s3

0

9

1

2
cosψ(1 − 4 sin2ψ)

Q · {∇s(Qν)− Q∇sν − divs Q ⊗ ν} = −4s2
0

9

1

R

{
9

2
− 3 sin2ψ

}
the latter formula being computed on the boundary ofBR. Then, inserting these expressions
in (3.4) we reduceF to a functional ofψ :

9

4s2
0

F [ψ ] := 2π
∫ R

0
dr r2

∫ π

0
dϑ sinϑ

{
L1

[
3

2

(
ψ2
,r + 1

r2
ψ2
,ϑ

)
+ 6

r2

(
1

2
+ cos2ψ + sin2ψ cot2 ϑ

)]
+ (L2 + L3)

[(
3

r
cosψ − ψ,r sinψ

)2
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+ 1

r2

(
ψ,ϑ sin

(π
3

− ψ
)

+
√

3 sinψ cotϑ
)2

]
− bs0 cosψ

(
1

2
− 2 sin2ψ

)}
−2πRL3

∫ π

0
sinϑ

{
9

2
− 3 sin2ψ

}
dϑ (6.1)

where, to comply with (5.1),ψ is a smooth function ofr and ϑ only, andψ,r andψ,ϑ
denote its partial derivatives. The presence in (6.1) of terms with cotϑ requires the following
conditions onψ to make the energy finite:

ψ(r,0) = ψ(r, π) = 0 ∀r ∈ [0, R] . (6.2)

We note that the surface term in (2.3) plays a role too, since we impose no conditions
on the eigenvalues, but satisfying Lyuksyutov’s constraint; we will return to this point in
section 9 on making comparisons with other approaches to the problem.

In the spirit of Cohen and Taylor’s theorem (see section 4), we do not try to solve
the Euler–Lagrange equation of (6.1), but we study the effects on the radial configuration
ψ = 0 of a perturbation chosen in a suitable class. Thus, we first consider variations of the
following kind:

ψ(u) = εν(u)

whereu := cosϑ , andν is a function of classC2(−1, 1), which are called theazimuthal
variations because they depend only onϑ . At the lowest order inε, we obtain

F [εν] = F [0] + 8π

3
s2

0ε
2F2[ν] + o(ε2) (6.3)

whereF2 is essentially the second variation ofF atψ = 0 in the above class. To compute
F2, we express (6.1) in terms ofu with the aid of (6.2) and an integration by parts:

F2[ν] =
∫ 1

−1
du

{
1
2

(
L1 + 1

2(L2 + L3)
)
(1 − u2)(ν ′)2 + 2

(
L1 + 1

2(L2 + L3)
) u2ν2

1 − u2

+[
1
4bs0R

2 − 2L1 − 5
2(L2 + L3)+ L3

]
ν2

}
(6.4)

where use has also been made of the end-point conditions forν,

ν(1) = ν(−1) = 0 (6.5)

inherited from (6.2). In (6.4), as below in this section, a prime denotes differentiation with
respect tou. The equilibrium equation forF2[ν] is

((1 − u2)ν ′)′ +
(

20 − 4

1 − u2

)
ν = 0 (6.6)

where, by (2.6b),

0 := 1

L1 + 1
2(L2 + L3)

(− 1
4bs0R

2 + 4L1 + 5
2L3 + 7

2L2
)
. (6.7)

It follows from the maximum principle that when0 < 2 the only solution of (6.6)
satisfying (6.5) isν = 0. To see this, suppose for a contradiction thatν is positive
somewhere in ]−1, 1[. Thus, there is at least one pointu0 in ]−1, 1[ where ν attains
its maximum: beingν(u0) > 0, ν ′(u0) = 0, andν ′′(u0) < 0, it follows from equation (6.6)
thatu0 must satisfy

2

1 − u2
0

< 0 .
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Were0 < 2, there would be nou0 satisfying this inequality, and so no solution of (6.6)
and (6.5) taking positive values in ]−1, 1[. The same argument works with trivial
adjustments in caseν would take negative values.

Equation (6.6) is known asLegendre equationand an analysis based on the properties
of the associated Legendre functions (see pp 998 and ff of [14]) shows that a non-trivial
bounded solution of (6.6) subject to (6.5) exists whenever 20 may be written as the product
of two consecutive integers and this, in turn, leads to the conclusion that the first acceptable
eigenvalue is0 = 3. Accordingly, we require0 > 3, obtaining

bs0R
2

4
6 L1 + 2L2 + L3 . (6.8)

Since both b and s0 are positive, condition (6.8) is satisfied for no value ofR if
L1+2L2+L3 6 0, and so we conclude that in this case the hedgehog is locally stable against
the kind of biaxial perturbations considered here. On the other hand, ifL1 + 2L2 +L3 > 0,
our analysis proves the existence of an instability for the hedgehog in the regionR 6 Rc,
where

Rc := 2√
bs0

√
L1 + 2L2 + L3 . (6.9)

In terms of Frank’s constants, the requirement thatL1 + 2L2 + L3 > 0 becomes

k4 < 2k1 − 3
2k2 (6.10)

which is compatible with Ericksen’s inequalities.
We have thus selected, among all values of Frank’s constants satisfying Eriksen’s

inequalities, those which allow the liquid crystal to gain energy by escaping into the biaxial
phase. Moreover, it is worth noting that (6.10) implies that such a biaxial structure should
exist whenk4, the surface-like constant of Frank’s theory, does not exceed an upper bound,
given in terms ofk1 andk2.

The existence of a critical radius should be interpreted as the sign that the radial
hedgehog exhibits a biaxial core: when the critical radius fails to exist, the core ceases
to be biaxial. An estimate ofRc for MBBA givesRc ≈ 102 Å, in substantial agreement with
the results of [8].

7. Radial variation

We explore in this section the stability of a radial hedgehog against biaxial perturbations
in a broader class. While the azimuthal variations do not depend on the radial coordinate,
those now being considered do; thus, we call them theradial variations. In the incipient
instability of a hedgehog they should reveal a more complex biaxial structure, as one
spiralling about the centre of the defect. The competition between these unstable modes
and those considered above will be analysed in section 8.

We setψ(r, u) := εν(r, u) with ν(r,−1) = ν(r,1) ∀r ∈ [0, R]. Again, the second
variationF2 is obtained from (6.1) and (6.2) via two integrations by parts, but now attention
should be paid to the fact thatν need not vanish forr = R, because the ballBR is thought
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of as if it were isolated from the surrounding hedgehog through an ideal surgery:

F2[ν] :=
∫ R

0
dr

∫ 1

−1
du

{
1
2L1r

2ν2
,r + 1

2

(
L1 + 1

2(L2 + L3)
)
(1 − u)2ν2

,u

+2
(
L1 + 1

2(L2 + L3)
) u2ν2

1 − u2
+ 3

4bs0r
2ν2 − (

2L1 + 3
2(L2 + L3)

)
ν2

}
−RL2

∫ 1

−1
duν2(R, u) . (7.1)

The equilibrium equations forF2 are

L1(r
2ν,r ),r + (

L1 + 1
2(L2 + L3)

)
((1 − u2)ν,u),u = (

L1 + 1
2(L2 + L3)

) 4u2ν

1 − u2

+ 3
2bs0r

2ν − 2
(
2L1 + 3

2(L2 + L3)
)
ν (7.2a)

2L2
L1
ν(R, u) = R(ν,r )|r=R (7.2b)

where the latter expresses the natural boundary condition forν. If we seek a solution
of (7.2) in the formν(r, u) = ρ(r)w(u), then (7.2a) splits into two eigenvalue problems,
while (7.2b) gives rise to a boundary condition onρ:

(r2ρ ′)′ − 3b

2L1
s0r

2ρ − λρ = 0
2L2

L1
ρ(R) = Rρ ′(R) (7.3)

((1 − u2)w′)′ − 4u2

1 − u2
w − µw = 0 w(−1) = w(1) = 0 (7.4)

with λ andµ satisfying the following relation:

(λ− 2)L1 + (µ+ 6)(L1 + 1
2(L2 + L3)) = 0 . (7.5)

In equations (7.3) and (7.4) a prime denotes differentiation with respect tor and u,
respectively. Equation (7.4) has the same structure as (6.6), since it can also be written in
the form

((1 − u2)w′)′ +
(
(4 − µ)− 4

1 − u2

)
w = 0 .

Thus the analysis already performed can be repeatedverbatim, obtaining non-trivial solutions
for (7.4) only whenµ is not positive and such that 4− µ is the product of consecutive
integers; hence, the first eigenvalue occurs forµ = −2.

If we definey(x) := ρ(Rx), we can write (7.3) thus:

(x2y ′)′ − (βx2 + λ)y = 0 (7.6a)

y ′(1) = 2L2

L1
y(1) (7.6b)

with

β := 3bs0
2L1

R2 > 0. (7.6c)

Here a prime clearly denotes differentiation with respect tox. It follows from the general
theory of singular differential equations that a solution of (7.6a), bounded asx → 0+, exists
only if λ > 0 and it can be represented as a power series everywhere convergent inR+

(see, for example, theorem 4.3 of [15]):

y(x) = xα
∞∑
k=0

ckx
k (7.7)
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with c0 = 1 and α := − 1
2 + 1

2

√
1 + 4λ > 0. The coefficientsck are determined on

substitution of (7.7) into (7.6a), which yields the recursive formulae:

2nc2n(2n+ √
1 + 4λ) = βc2n−2 c2n+1 = 0 for n = 1, 2, . . . . (7.8)

As to limit condition (7.6b), we note that, by (7.7),

y ′(1)− αy(1) =
∞∑
n=1

2nc2n . (7.9)

The series on the right-hand side of (7.9) can be estimated by appeal to (7.8):

2nc2n <
β

2 + √
1 + 4λ

c2n−2 .

Hence,

∞∑
n=1

2nc2n <
βy(1)

2 + √
1 + 4λ

so that

y ′(1)
y(1)

< α + β

2 + √
1 + 4λ

. (7.10)

This inequality provides a lower bound on the values ofβ for which there is a non-trivial
solution for (7.6):

β >

(
2L2

L1
− α

)
(2α + 3) . (7.11)

Moreover, sinceck are all positive, by (7.9) we also have

2L2

L1
= y ′(1)
y(1)

> α (7.12)

and so a non-trivial solution of (7.6) exists only ifL2 > 0, sinceL1 is positive by (2.6d).
Making use of (7.8) and (7.9), we may write (7.6b) in a more expressive way:

∞∑
n=0

bnβ
n = 0 (7.13)

with

bn = 2n+ α − 2L2
L1

hn
for n = 0, 1, 2, . . .

h0 = 1 hn = 2n(2n+ 1 + 2α)hn−1 for n = 1, 2, . . . .

By equation (7.5), all these coefficients also depend on the elastic constants through the
eigenvalueλ.

Finding a non-trivial solution to problem (7.6) amounts to finding a root of (7.13).
Through (7.6c), this determines the critical radius for a radial variation, which depends on
the elastic constants in an intricate way. Whether this variation actually prevails over the
azimuthal ones in activating an unstable mode is discussed in the following section.



Metastable nematic hedgehogs 4259

8. Phase diagram

We can combine the results of the preceding sections in a diagram illustrating the local
stability of the hedgehog, for all admissible values of Landau–de Gennes constants. To this
end we introduce the dimensionless quantitiesξ andη defined as

ξ := L2

L1
η := L3

L1
. (8.1)

Hereafter, in dealing with radial variations, we restrict our attention to the lowest
eigenvalueλ1 obtained from (7.5) by settingµ = −2:

λ1 := −2
L1 + L2 + L3

L1
= −2(ξ + η + 1) .

Thus, the azimuthal componentw of a possibly unstable radial mode is precisely the same
as the first unstable azimuthal mode. It is now to be determined whether the higher degree
of freedom in a radial variation can change the picture drawn from the azimuthal stability
analysis in section 6. A solution of (7.6a) exists only ifλ1 > 0, that is in the half-plane

ξ + η + 1 6 0 . (8.2)

Condition (7.12) can be stated as

η > −(2ξ2 + 2ξ + 1) (8.3)

which applies only forξ > 0.
On the other hand, as shown in section 6, an azimuthal instability happens if and only

if L1 + 2L2 + L3 > 0, that is whenever

1 + 2ξ + η > 0 . (8.4)

Moreover, in seeking biaxial instabilities of a hedgehog, we should make sure that it is
locally stable against uniaxial variations, requiring, by (4.2), that

2 − 7(ξ + η) > 0 . (8.5)

Finally, Ericksen’s inequalities (2.6a), (2.6c) and (2.6d) read as

2 + 2ξ + η > 0 − 2< η < 2 . (8.6)

Collecting all these inequalities, we obtain the regions in the(ξ, η)-plane outlined in figure 5.
In region M the hedgehog is locally stable against all biaxial variations hitherto

considered, while inVa only the azimuthal unstable modes are allowed. RegionVr is
divided into two parts by the line 1+ 2ξ + η = 0 (broken in figure 5): below it, only radial
unstable modes may arise, whereas above it, the two types of unstable mode compete one
against the other. We decide which one prevails by comparing the critical radii of both.

Sinceξ 6 1 in Vr , the coefficientsbn appearing in (7.13) are positive for alln > 1,
so that the functionf (β) := ∑∞

n=1 bnβ
n is monotonically increasing and equation (7.13),

written in the form
2L2

L1
− α = f (β) (8.7)

assures us that, if 2L2/L1 > α, there is a unique value ofβ allowing for a non-trivial solution
of (7.6). Furthermore, we show that the radial instability prevails over the azimuthal one
everywhere inVr , as it is excited at greater values of the critical radius. Letβm be the lower
bound forβ given byβm := (2ξ − α)(α+ 3) (see (7.11)) and letβa be the critical value of
β in the azimuthal case, corresponding to (6.9) through the definition ofβ in (7.6c):

βa := 6(1 + 2ξ + η) . (8.8)
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Figure 5. Phase diagram. It
illustrates how the instability of
the radial hedgehog depends on
the elastic constants.

Figure 6. RegionVr , after the change of coordinates(ξ, η) → (ε, α).

If we express the value ofα corresponding to the lowest eigenvalueλ1 as a function ofξ
andη:

α(ξ, η) = − 1
2 + 1

2

√
−7 − 8ξ − 8η (8.9)

and defineε(ξ, η) := 2ξ − α(ξ, η), by the change of variables

ξ = 1
2(ε + α) η = − 1

8((2α + 1)2 + 7 + 4(ε + α))

we transformVr into the region delimited by the new coordinate axes and the parabola
ε = 2 − 2α − α2, as sketched in figure 6.

Hence,βm − βa = α(2ε + 3α) is clearly positive in the admissible region, except
for α = 0 where it vanishes. The desired conclusion then follows from the inequalities
β > βm > βa.

Remark 1. As an aside, we observe that the region delimited by the linesη = −2, ξ = 0
and the parabolaη = −(2ξ2+2ξ+1) is stable not only for the lowest eigenvalueλ1 but for
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Figure 7. The curves show the behaviour of the quadratic approximation toβ in Vr for different
values ofη.

all other eigenvalues as well. In fact, this region in the(ξ, η)-plane is characterized by the
inequality 2ξ < α1, with α1 the value ofα corresponding toλ1. Sinceα is a monotonically
increasing function ofλ, we have 2ξ < αi for all i > 1, whereαi is α computed for the
ith eigenvalue; thus, by (7.12), only the trivial solution of (7.6) survives here.

Unlike the azimuthal unstable mode, we have no explicit expression for the critical radius
that excites the radial mode; nevertheless, we can use equation (7.13) to determineβ, and
thenRc, with the desired accuracy. To grasp the qualitative behaviour ofβ in Vr it suffices
to consider the quadratic approximation to the functionf in (8.7), which leads us to

β = β2(ξ, η) := −b1 +
√
b2

1 − 4b0b2

2b2
(8.10)

where

b0 := α − 2ξ b1 := 2 + α − 2ξ

2(3 + 2α)
b2 := 4 + α − 2ξ

8(3 + 2α)(5 + 2α)
.

The curves in figure 7 are sections of the graph ofβ = β2(ξ, η) for several selected values
of η, viewed from the planeη = −2.

The straight line 1+ ξ +η = 0 in figure 5 represents the locus where the radial unstable
mode, prevailing inVr , is replaced by the azimuthal mode. It is interesting to note that
this transition between the two modes happens with a discontinuity in the critical radius.
Indeed, a direct computation shows the existence of a jump betweenβa, expressed by (8.8),
andβ2:

βa − β2 = 6ξ − 5[2ξ − 2 +
√

4
5(5 + 2ξ − ξ2)]

2 − ξ
. (8.11)

We close this section with yet another remark about higher modes.

Remark 2. Condition 2L2/L1 > α implies the existence of non-trivial solutions of (7.6)
also for eigenvaluesλ other thanλ1. For any given value of the elastic constants, only
a finite numbern∗ of coefficientsbn are negative. Equation (7.13) can be written as∑n∗

n=0 −bnβn = ∑∞
n=n∗+1 bnβ

n, where both sides are monotone, convex functions. As
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β → +∞, the left-hand side goes to infinity more slowly than the right-hand one, and it
takes a positive value atβ = 0. This suffices to conclude that there is precisely one value
of β satisfying (7.13), as claimed.

9. Comparison with previous studies

In this section we put our work in the same perspective as other studies on the fine structure
of point defects in nematics. Our main term of comparison is Penzenstadler and Trebin’s
paper [8], often cited above. They show that a radial hedgehog is always unstable since its
energy exceeds that of a non-singular ring disclination. Their analysis is nonlinear, though
confined within a narrow class of biaxial orientations: the admissible order tensors are
represented by the formula

Qλ :=
√

3
2Q0

[
Aλ(r, ϑ)

(
er ⊗ er − 1

3I
) + Bλ(r, ϑ)

(
ez ⊗ ez − 1

3I
)]

(9.1)

where the unit vectorez lies along the polar axis in a spherical coordinate system, and the
functionsAλ andBλ are given the special form

Aλ(r, ϑ) = r2√
r4 + λ2r2(3 cos2 ϑ − 1)+ λ4

Bλ(r, ϑ) = λ2

r2
Aλ(r, ϑ) (9.2)

whereλ is a positive parameter with the physical dimensions of a length. The functions
in (9.2) are such that

lim
r→∞A

λ(r, ϑ) = 1 lim
r→0+

Aλ(r, ϑ) = 0

lim
r→∞B

λ(r, ϑ) = 0 lim
r→0+

Bλ(r, ϑ) = 1 for all λ > 0

so that away from the originQλ approaches the radial hedgehog, whereas at the origin it
represents the uniaxial orientation along the polar axis. On the other hand, in the limit as
λ → 0+, Bλ vanishes everywhere, whileAλ is equal to 1, so thatQλ tends to the radial
hedgehog. With this choice ofAλ andBλ the class of admissible fields in (9.1) is a one-
parameter family: the energy attains its minimum forλ = λ0 > 0, which represents the
equilibrium radius of the ring; the estimate ofλ0 for a typical nematic liquid crystal such
asMBBA turns out to beλ0 ≈ 250 Å.

The eigenvectors ofQλ differ everywhere from the triad(er , eϑ , eϕ), but on the
equatorial planeϑ = π

2 ; nevertheless,eϕ is an eigenvector ofQλ for all values ofϑ .
To compute the angleψλ that represents the eigenvalues ofQλ as ψ defined in (5.4)
represents those ofQ in (5.1), we compare the eigenvalue ofQλ relative toeϕ , that is
− 1

3(A
λ + Bλ)

√
3
2Q0, to the corresponding eigenvalue ofQ, as given by (5.5c): by (3.2)

and (3.3), we conclude that

ψλ = arccos

(
Aλ + Bλ

2

)
− π

3
(9.3)

where the cosine function is inverted onto the interval [0, π ]. It is easily seen thatψλ

vanishes at the origin and that

ψλ(r, ϑ) > ψλ
(
r,
π

2

)
for all r > 0 and ϑ ∈ [0, π ]

so thatψλ attains its minimum on the equatorial plane; a direct computation then shows
that

minψλ = ψλ
(
λ,
π

2

)
= −π

3
(9.4)
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in agreement with the uniaxial nature of the ring. Equation (9.4) also shows that, for small
λ, Qλ cannot be regarded as a small biaxial perturbation of the radial hedgehog, for which
ψ ≡ 0, and this explains why metastable hedgehogs escape Penzenstadler and Trebin’s
analysis.

There is a further aspect under which our analysis is different from theirs. Here the
surface-like elastic constantL3 affects the critical radius, as is clear for example in (6.9),
while the formula forλ0 in [8] depends only onL1 andL2. The reason is that here the core
of the defect has a free spherical interface, and no boundary condition is enforced, neither
on it nor at infinity, as done in [8].

Recently, the predictions of [8] have been confirmed by a numerical simulation of the
energy minimizers in a droplet subject to a radially uniaxial boundary condition [16]. In
these calculations Landau–de Gennes energy is employed, but bothL2 andL3 in (2.3) are
set equal to zero. On the phase diagram in figure 5, this choice of elastic constants would
correspond to the origin. Since it falls within the region where the unstable azimuthal mode
manifests itself, the simulations of [16] agree with our analysis. It would be interesting
to explore, through the same numerical algorithm, the other regions in the above phase
diagram.

More than twenty years ago, Candauet al observed a radial hedgehog in a droplet, which
exhibited a small twisted region in its core. When viewed between crossed polarizers, the
arms of the extinction cross were twisted as well. ‘When rotating the polarizer and analyser
together, the extinction arms rotate the same way. This demonstrates the radial nature of the
configuration of the liquid crystal within the droplet’ (cf [17], p 287). To our knowledge,
similar observations have not been reported again for nematics. A qualitative explanation
might be provided within our model through the hedgehogs falling in the regionVr of the
phase diagram in figure 5, where the effective unstable mode is radial, rather than azimuthal,
and the core is larger in size.

10. Conclusions

The local stability analysis of radial hedgehogs proposed in this paper has shown that some
are metastable against biaxial variations in a rather wide class. The core of these hedgehogs
fails to possess a biaxial fine structure: it should be adequately described by the model first
proposed by Schopohl and Sluckin [11], which is formulated within the theory of uniaxial
nematics with only a scalar order parameter. Among the locally unstable hedgehogs, we
distinguish two categories, depending on the values of the elastic constants. In the one
category, the core of the defect should develop a biaxial equilibrium structure with the ring
described in [8], while in the other the core should be larger in size and its biaxial structure
more complex, with some spiral feature, like that suggested by the observations of [17].
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